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An Introduction to Genomic Data 

• Next Generation Sequencing (NGS) machines allow for simple, 
cheap human genomic data 

• Human genomic variants are the key to precision medicine and 
personalized drug development  

• However, genomic data is: 
• Very large (raw output from NGS machine ~200 GB) 
• Expensive to store and maintain 
• Computationally intensive to process 



Genomic Sequence Analysis Pipelines 
• NGS machines do not actually output a total genomic sequence 
• Three step process required to finally obtain variant data for 

analysis 
Structure of a Sequence 
Analysis Pipeline 



Compression of Genomic Data 

• Compression will make it much 
more accessible 

• Intrinsic biological patterns 
provide a unique opportunity 
for compression 

• Understanding these features 
will enable improvements in 
precision medicine and 
genomic analysis 

 
 

Pictorial Representation of Genomic Data 



Ongoing Research Into Genomic Compression 

• Quality Score Reduction at Terabyte 
Scale (QUARTZ) 

• Compression of raw data through 
standardized quality scores 

• Lossy compression 
• Compressive Read Mapping Accelerator 

(CORA) 
• Uses redundancy of NGS output reads to 

speed up read mapping 
• Both methods improve only raw data 

Process of Standardizing Quality Scores 
Using QUARTZ 



   Analysis of Variant Data 

• No current method that exploits intrinsic 
patterns to compress variant data 

• Focus on intrinsic patterns found in Single 
Nucleotide Polymorphisms (SNPs) 

• Found that one direction occurred 
significantly more than the other in 
transitions and transversions 

 
 
 

Relative Frequencies of SNPs 



Ones Algorithm Analysis 

• Used for analyzing intrinsic SNP patterns 
• Gives an optimal set of rules describing any 

pattern 
• Only works for noiseless data 
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Initial Compression of Variant Calls 

• Considering pairs of consecutive SNPs 
• 144 Possible Pairs 
• Gaps (# of bp) between the 2 SNPs 

• Only encode pairs where SNPs are within 40 bp of each other 
• Frequency Based Encoding 
• Lossless 
• ~80% of all pairs 

• Compressed files 28% of original file size(~3.5 x compression) 



Improvements to Current Compression 

• Look at groups of 3 consecutive SNPs and corresponding gaps 
• Integrate Ones Algorithm results to represent SNP patterns in a 

simple manner 
• Make modifications to the reference genome using analysis of 

a noise-considering Ones Algorithm 
• Ex: Approximately every 5th SNP is T>A 
 

 
 
 
 



Applying Deep Learning to Variant Call 
Compression 

Structure of an Artificial Neural 
Network 

• Initial analysis demonstrates huge 
potential for compression in variant 
call files 

• Deep learning can be applied to learn 
intrinsic biological patterns 

• Unsupervised learning(no labels) 
• Opportunity to develop a better 

understanding of biological variants 
 
 



Autoencoders for Variant Compression 
Autoencoder with Undercomplete 

Hidden Layer 
• Goal: Output = Input 
• Simple network with three layers 

• Input Layer 
• Undercomplete Hidden Layer 
• Output Layer 

• Lossy compression 
• Can be made lossless with enough 

features/training iterations 
• Can adjust for determined loss to 

ensure losslessness 
 
 



Denoising Autoencoder 

Basic Structure of a Denoising Autencoder 

 
• Original input corrupted to ensure robust feature learning 
• Does not necessarily need an undercomplete hidden layer 

• However will most likely result in best compression 
• Will learn most important features 

• Forced to compress data in two different ways simultaneously 
 
 



Electronic Health Record (EHR) Systems 

• Increasing in popularity as paper medical records become 
obsolete 

• Enable patient access to all medical data 
• Development of personalized apps which utilize this data 
• Opportunity to integrate genomic data with rest of medical 

information 
• Simplifies development of precision medicine 



SMART on FHIR 

Overall Structure of SMART on FHIR • Fast Health Interoperability Resource 
• Built on Health Level 7 (HL7) 

International Standards 
• Defined set of resources for various 

patient data 
• Allows simple creation of apps 

• Each resource is defined using a 
standard format such as json 

• Key to making EHRs easily accessible in 
a standard format 

 



FHIR Genomics Sequence Resource 

Role of Sequence Resource • Specific set of resources built to 
handle genomic information 

• Focus on patient genomic variant data 
• Looks at only small windows of 

genomes which contain useful variant 
data are stored 

• Provides link to GA4GH repository to 
easily access full sequence data 

 



Examples of Variant Information in the 
Sequence Resource 

{ 
  "species": {"text": "Homo 
sapiens"}, 
  "id": "t10116", 
  "type": "DNA", 
  "variation": { 
      "start": 86552205, 
      "end": 86552206, 
      "observedAllele": "G", 
      "referenceAllele": "A" 
  }, 
  "resourceType": "Sequence", 
  "referenceSeq": { 
      "genomebuild": "37", 
      "windowStart":"86552200”, 
      "chromosome": 22, 
      "windowEnd": "86552210", 
      "referenceSeqId": "GRCh" 
  } 
} 

SNP INSERTION 
{ 
   "species": {"text": "Homo 
sapiens"}, 
   "id": "t175", 
   "type": "DNA", 
   "variation": { 
       "start": 712040, 
       "end": 712047, 
       "observedAllele": "CAGCTGT", 
       "referenceAllele": "C" 
   }, 
   "resourceType": "Sequence", 
   "referenceSeq": { 
       "genomebuild": "37", 
       "windowStart": "712040", 
       "chromosome": 22, 
       "windowEnd": "712050", 
       "referenceSeqId": "GRCh" 
   } 
} 



Future Work 

• Full implementation of the deep learning algorithm 
• Autoencoder with Undercomplete Hidden Layer 
• Denoising Autoencoder 

• Analysis on which features of genomic variant data allow for 
compression 

• Complete encoding and lossless decoding of VCF files using 
compression determined by deep learning 

• Full integration of compressed files into FHIR Sequence Resource 
for use with EHRs 



Conclusions 
• Variant calls, the most important genomic data to medical and 

biological institutions, are expensive to store, maintain and 
process due to their size 

• Initial analysis has proven that extensive compression is possible 
in this data due to intrinsic biological patterns and dependencies 

• Deep learning provides a method to achieve far better 
compression while also learning new biology about genomic 
variants 

• Integration into smart EHR systems such as FHIR will allow simple 
doctor and patient access to this data in the future 
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More Cool Pictures of Genomic Data 
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